Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes

نویسندگان

  • Guanghua Gao
  • Tahir Çağın
چکیده

In this paper, we present extensive molecular mechanics and molecular dynamics studies on the energy, structure, mechanical and vibrational properties of single-wall carbon nanotubes. In our study we employed an accurate interaction potential derived from quantum mechanics. We explored the stability domains of circular and collapsed cross section structures of armchair (n,n), zigzag (n, 0), and chiral (2n,n) isolated single-walled carbon nanotubes (SWNTs) up to a circular cross section radius of 170 Å. We have found three different stability regions based on circular cross section radius. Below 10 Å radius only the circular cross section tubules are stable. Between 10 and 30 Å both circular and collapsed forms are possible, however, the circular cross section SWNTs are energetically favorable. Beyond 30 Å (crossover radius) the collapsed form becomes favorable for all three types of SWNTs. We report the behavior of the SWNTs with radii close to the crossover radius ((45, 45), (80, 0), (70, 35)) under uniaxial compressive and tensile loads. Using classical thin-plane approximation and variation of strain energy as a function of curvature, we calculated the bending modulus of the SWNTs. The calculated bending moduli are κ(n,n) = 963.44 GPa, κ(n,0) = 911.64 GPa, and κ(2n,n) = 935.48 GPa. We also calculated the interlayer spacing between the opposite sides of the tubes and found d(n,n) = 3.38 Å, d(2n,n) = 3.39 Å, and d(n,0) = 3.41 Å. Using an enthalpy optimization method, we have determined the crystal structure and Young’s modulus of (10,10) armchair, (17, 0) zigzag and (12, 6) chiral forms (which have similar diameter as (10,10)). They all pack in a triangular pattern in two dimensions. Calculated lattice parameters are a(10,10) = 16.78 Å, a(17,0) = 16.52 Å and a(12,6) = 16.52 Å. Using the second derivatives of potential we calculated Young’s modulus along the tube axis and found Y(10,10) = 640.30 GPa, Y(17,0) = 648.43 GPa, and Y(12,6) = 673.94 GPa. Using the optimized structures of (10, 10), (12, 6) and (17, 0), we determined the vibrational modes and frequencies. Here, we report the highest in-plane mode, compression mode, breathing mode, shearing mode and relevant cyclop mode frequencies. M This article features multimedia enhancements available from the abstract page in the online journal; see http://www.iop.org.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of small scale on the vibrational behavior of single-walled carbon nanotubes with a moving nanoparticle

In this paper, free and forced vibration of simply-supported Single-walled carbon nanotube is investigated under the moving nanoparticle by considering nonlocal cylindrical shell model. To validate the theoretical results, modal analysis of nanotube is conducted using ANSYS commercial software. Excellent agreement is exhibited between the results of two different methods. Furthermore, the dynam...

متن کامل

On the Mechanical Properties of Chiral Carbon Nanotubes

Carbon nanotubes (CNTs) are specific structures with valuable characteristics. In general, the structure of each nanotube is defined by a unique chiral vector. In this paper, different structures of short single-walled CNTs are simulated and their mechanical properties are determined using finite element method. For this aim, a simple algorithm is presented which is able to model the geometry o...

متن کامل

Multiscale Evaluation of the Nonlinear Elastic Properties of Carbon Nanotubes Under Finite Deformation

This paper deals with the calculation of the elastic properties for single-walled carbon nanotubes (SWCNTs) under axial deformation and hydrostatic pressure using the atomistic-based continuum approach and the deformation mapping technique. A hyperelastic model based on the higher-order Cauchy-Born (HCB) rule being applicable at finite strains and accounting for the chirality and material nonli...

متن کامل

Molecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes

Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...

متن کامل

Finite Element Modeling of the Vibrational Behavior of Single-Walled Silicon Carbide Nanotube/Polymer Nanocomposites

The multi-scale finite element method is used to study the vibrational characteristics of polymer matrix reinforced by single-walled silicon carbide nanotubes. For this purpose, the nanoscale finite element method is employed to simulate the nanotubes at the nanoscale. While, the polymer is considered as a continuum at the larger scale. The polymer nanotube interphase is simulated by spring ele...

متن کامل

Single Walled Carbon Nanotube Effects on Mixed Convection heat Transfer in an Enclosure: a LBM Approach

The effects of Single Walled Carbon Nanotube (SWCNT) on mixed convection in a cavity are investigated numerically. The problem is studied for different Richardson numbers (0.1-10), volume fractions of nanotubes (0-1%), and aspect ratio of the cavity (0.5-2.5) when the Grashof number is equal to 103. The volume fraction of added nanotubes to Water as base fluid are lowers than 1% to make dilute ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998